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Abstract
An Adaptive Stochastic Finite Elements approach for unsteady problems is developed. Unsteady solutions of dy-
namical systems are known to be sensitive to small input variations. Stochastic Finite Elements methods usually
require a fast increasing number of elements with time to capture the effect of random input parameters in these
time-dependent problems. The resulting large number of samples required for resolving the long-term asymptotic
stochastic behavior, results for computationally intensive fluid-structure interaction simulations in impractically
high computational costs. The Unsteady Adaptive Stochastic Finite Elements (UASFE) formulation proposed
in this paper maintains an approximately constant accuracy in time with a constant number of samples. The
approach is based on a time-independent parametrization of the sampled time series in terms of frequency, phase,
amplitude, reference value, damping, and higher-period shape function. This parametrization is interpolated us-
ing a robust Adaptive Stochastic Finite Elements method based on Newton-Cotes quadrature in simplex elements.
The effectiveness of the UASFE approach is illustrated by applications to a mass-spring-damper system and the
Duffing equation with random input parameters. The results are verified by comparison to those of Monte Carlo
simulations.

1 Introduction
Mathematical models of engineering problems often contain input parameters which are subject to inherent phys-
ical randomness. If a system is sensitive to this variability, the random parameters can result in performance
degeneration of a deterministically optimized design. The asymptotic behavior of dynamical systems with dis-
continuous solutions is known to be sensitive to small input variations. This type of problems is encountered in
engineering practice in flutter analysis of the fluid-structure interaction of wing structures. Here, flutter refers
to the loss of dynamical stability at a critical dynamic pressure to an oscillatory instability that can grow in an
unbounded fashion [3]. Flutter of aeroelastic systems is of interest to engineers, since it can lead to structural
failure and fatigue damage of the wing structure [8]. In these applications randomness can occur in, for example,
material properties, fluid parameters, and boundary conditions, such as structural stiffness, structural damping,
geometry, fluid viscosity, and atmospheric conditions.

It is recognized that predicting the large effect of random parameters in fluid-structure interaction problems
is a challenging task. Performing Monte Carlo (MC) simulations [4], in which many deterministic problems are
solved for randomly varying parameter values, is in this case not an economically feasible option, since deter-
ministic fluid-structure interaction simulations are already computationally intensive. More efficient numerical
methods are, therefore, needed which require in essence less deterministic solves to capture the effect of random
input parameters.

Adaptive Stochastic Finite Elements (ASFE) methods [2, 5, 6, 10, 13] are examples of more efficient al-
ternatives for Monte Carlo simulation. The Adaptive Stochastic Finite Elements (ASFE) approach based on
Newton-Cotes quadrature in simplex elements [13] is employed in this paper, since it is a non-intrusive multi-
element approach which requires a relatively low number of deterministic solves. The approach is based on a
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piecewise quadratic approximation of the response surface by dividing probability space into simplex elements.
The approximation is constructed by collocating the problem in second-degree Newton-Cotes quadrature points
in the elements. The elements are refined adaptively using a refinement measure based on the curvature of the
response surface approximation weighted by the probability represented by the elements.

Successful applications of ASFE with Newton-Cotes quadrature and simplex elements are given in [13].
However, for resolving the time evolution of unsteady problems, Adaptive Stochastic Finite Elements methods
usually require an increasing number of elements with increasing integration time [10]. This problem is especially
profound in dynamical systems with oscillatory solutions in which the frequency of the response is affected by
the random parameters [9, 11]. Resolving the long-term asymptotic stochastic behavior of these systems requires
a high number of elements, due to the increasing phase differences with increasing time.

ASFE is in this paper combined with an extension of Probabilistic Collocation for Limit Cycle Oscillations
(PCLCO) [12]. PCLCO is an efficient method for resolving the long-term stochastic effect of random parameters
on period-1 oscillations. In PCLCO, Probabilistic Collocation [1, 7] is applied to a time-independent parametriza-
tion of periodic time series instead of to the time-dependent samples themselves. Due to the time-independent
parametrization the accuracy of PCLCO is approximately independent of time for a constant number of samples.
For period-1 oscillations a suitable parametrization consists of the frequency, relative phase, amplitude, a refer-
ence value and the normalized period. These functionals are interpolated in PCLCO using the global polynomial
approximation of Probabilistic Collocation.

PCLCO has successfully been applied to a harmonic oscillator, an airfoil flutter model, and the flow around an
elastically mounted cylinder in [12]. Although PCLCO results in a significant reduction of computational costs
to resolve the stochastic behavior of these dynamical systems, it is subject to the following four limitations:

1. The global polynomial approximation of the time-independent functionals is only appropriate if these func-
tionals are sufficiently smooth. Especially near bifurcation points, at which the response exhibits a singu-
larity, this assumption is not valid.

2. The PCLCO formulation is limited to periodic limit cycle oscillation responses. In practical applications it
is not trivial to ensure a priori that periodic solutions exist for the relevant parameter range.

3. PCLCO has only been applied to period-1 oscillations. Dynamical systems result in practice also in higher-
period motions.

4. The application of PCLCO has been limited to random inputs in terms of a single random parameter. In
practical applications the number of random parameters is usually larger than one.

In this paper, an Adaptive Stochastic Finite Elements approach for unsteady problems is developed based on a
combination of the robust ASFE formulation with Newton-Cotes quadrature in simplex elements and an extension
of the time-independent parametrization of PCLCO to damped and higher-period oscillations. The applicability
of Unsteady Adaptive Stochastic Finite Elements (UASFE) extends beyond that of PCLCO with respect to the
four limitations mentioned above:

1. The robustness of ASFE enables the application of the proposed approach to problems with bifurcations,
in which the time-independent functionals are non-smooth.

2. The effect of positive and negative damping is resolved by the inclusion of a damping parameter in the
time-independent parametrization, such that there is no need to ensure the existence of periodic solutions.

3. The proposed UASFE formulation includes an algorithm for parametrizing multi-period oscillations.

4. Applications to dynamical systems with inputs consisting of multiple random parameters are presented.

UASFE is applicable to problems with oscillatory solutions in which the functionals frequency, phase, amplitude,
reference value, damping, and period shape are well defined in the asymptotic range.

The proposed approach is applied to a linear mass-spring-damper system and the nonlinear Duffing equation
with random input parameters. The results are compared to those of Monte Carlo simulations. The mass-spring-
damper system is considered to study the effect of positive and negative damping on the stochastic results. Input
randomness is assumed in a spring stiffness parameter, damping parameter, and a combination of both. The
effect of random initial conditions is studied for the Duffing equation. The bifurcation behavior of the Duffing
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system results in a long-term solution which is highly sensitive to variations in the initial conditions. The current
applications are limited to the asymptotic behavior of single-frequency rigid-body motions. Extension beyond
these limitations needs further attention.

The paper is organized as follows. Unsteady Adaptive Stochastic Finite Elements are introduced in section 2.
Numerical results for the mass-spring-damper system and the Duffing equation subject to random parameters are
presented in section 3. The paper is concluded in section 4.

2 Unsteady Adaptive Stochastic Finite Elements
In this section Unsteady Adaptive Stochastic Finite Elements (UASFE) based on Newton-Cotes quadrature in
simplex elements are developed. The employed Adaptive Stochastic Finite Elements (ASFE) framework is dis-
cussed in section 2.1. In section 2.2 the formulation for unsteady problems is introduced.

2.1 Adaptive Stochastic Finite Elements
Consider the following dynamical system

L(x, t; u(x, t, ω)) = S(x, t), (1)

subject to random input parameters, with operator L and source term S defined on domain D ⊂ R
d × T ,

d = {1, 2, 3}, T = [0, tstop], and appropriate initial conditions. Equation (1) describes the system output response
u(x, t, ω), where x ∈ D and t ∈ T denote the spatial and temporal dimensions, and ω ∈ Ω is a realization of the
set of outcomes Ω of the probability space (Ω, F , P ), with F ⊂ 2Ω the σ-algebra of events and P a probability
measure. The dimension n of probability space Ω is equal to the number of independent second-order random
input parameters a(ω) = {a1(ω), . . . , an(ω)}, with a(ω) ∈ A. A two-dimensional probability space with n = 2
random input parameters a(ω) = {a1(ω), a2(ω)} is considered in this paper.

Adaptive Stochastic Finite Elements based on Newton-Cotes quadrature in simplex elements [13] divide
parameter space A into Ne simplex elements Ai for i = 1, . . . , Ne. A piecewise quadratic approximation of
u(x, t, ω) is constructed based on Ñs = 6 deterministic solves in the second-degree Newton-Cotes quadrature
points in the elements Ai, see Figure 1a. The mth statistical moment E(u(x, t, ω)m) of u(x, t, ω) is then approx-
imated by

E(u(x, t, ω)m) =

∫
Ω

u(x, t, ω)mdω ≈

Ne∑
i=1

Ñs∑
j=1

ci,jui,j(x, t)m, (2)

where ci,j are Newton-Cotes quadrature weights and ui,j(x, t) are realizations of the response u(x, t, ω) for the
parameter values ai,j in the quadrature points in element Ai. The quadrature weights ci,j are given by the second-
degree Newton-Cotes formula in parameter space A weighted by the probability distribution of the random input
parameters a(ω).

The elements Ai are adaptively refined using refinement measure ρi based on the curvature of the response
surface approximation in the elements weighted by the probability represented by the elements. As measure
for the curvature the largest absolute eigenvalue of the Hessian of the quadratic approximation in the elements is
used. In the refinement the element Ai with the highest value of refinement measure ρi is refined into two simplex
elements. The longest edge of the element is split into two halves of equal length and maximal 3 new samples are
computed, which are given in Figure 1b by the black dots. The new refinement measures in the refined element
are determined and the element with the largest refinement measure is again refined, etc. The initial grid consists
of Neini

= 2 elements and Nsini
= 9 samples, see Figure 1c.

Due to the Newton-Cotes quadrature the required number of deterministic solves is relatively low, since (1)
the deterministic samples are reused in successive refinement steps due to the location of the quadrature points,
and (2) the samples are used in approximating the response in multiple elements, because most quadrature points
are located on the boundaries of the elements. This results for uniform grid refinement in an average number of
samples per element Ns/NΩ that approaches 2.

In order to preserve monotonicity and optima of the samples in the piecewise polynomial approximation, the
elements are subdivided into 4 simplex subelements with a linear trapezoidal rule approximation of the response
where necessary, see Figure 1d. An element is split into subelements when the quadratic approximation of the
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(a) Element (b) Refinement (c) Initial grid (d) Subelements

Figure 1: The 2-simplex element Ai in parameter space A and the second-degree Newton-Cotes quadrature points
given by the dots.

response in the element has an optimum other than in a quadrature point. This prevents unphysical predictions
due to over- and undershoots near singularities.

2.2 Adaptive Stochastic Finite Elements for unsteady problems
In unsteady problems, Adaptive Stochastic Finite Elements methods can result in a fast increasing number of
elements with time. The Unsteady Adaptive Stochastic Finite Elements (UASFE) formulation proposed here is
based on a time-independent parametrization of the sampled time series to enable a constant accuracy in time
with a constant number of samples. The time-independent parametrization developed below is an extension of
the parametrization employed in Probabilistic Collocation for Limit Cycle Oscillations (PCLCO) [12] to damped
and multi-period oscillations. For the parametrization, u(t, ω) is approximated by the following representation
ũ(t, ω):

ũ(t, ω) = u0(ω) + eγ(ω)(tstop−t)A(ω)uperiod(τ(ω), ω), (3)
and τ(ω) = 2π(φ(ω) + (t − tstop)f(ω)) (mod 2π), with tstop the end time of the numerical time integration.
The argument x has been dropped here for clarity. The response u(t, ω) is parametrized by (3) in terms of the
frequency f(ω), relative phase φ(ω), amplitude A(ω), a reference value u0(ω), damping γ(ω), and normalized
period uperiod(τ, ω), with τ ∈ [0, 2π], see Figure 2.

The parametrization is extracted from the Ns sampled solutions uk(t) of (1) for the parameter values a(ω)
of the Newton-Cotes quadrature points in the elements. The Ns deterministic time series uk(t) result in Ns

realizations of fk, φk , Ak, u0k
, γk, and uperiod

k
(τ). ASFE are used to interpolate these realizations, for example

fk for k = 1, . . . , Ns, to the functional f(ω). The functionals are substituted into (3) to obtain an approximation
of u(t, ω). The Unsteady Adaptive Stochastic Finite Elements algorithm consists of the following 10 steps:

1. Perform the deterministic solves of the initial grid;

2. Extract the local optima from the time series;

3. Select the last completed period of the time series;

4. Extract the time-independent parametrization from the last completed periods;

5. Determine the parametrization error in the reconstruction of the samples;

6. Detect higher-period oscillations in the time series;

7. Determine the valid time interval of all samples;

8. Construct the response approximation on the initial grid;

9. Refine the stochastic grid and repeat steps 2 to 8 for the new samples;

10. Stop the refinement based on convergence in the L∞-norm.
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Figure 2: Time-independent parametrization of oscillatory time series employed in Unsteady Adaptive Stochastic
Finite Elements.

3 Results
The Unsteady Adaptive Stochastic Finite Elements (UASFE) formulation is applied to a mass-spring-damper
system and the Duffing equation in sections 3.1 and 3.2, respectively. The results are compared to those of Monte
Carlo (MC) simulations. The number of samples in the Monte Carlo simulations is established after performing
convergence studies.

3.1 Mass-spring-damper system
A mass-spring-damper system of a mass attached to a spring and a damper is considered with randomness in the
spring stiffness parameter K(ω) and the damping constant C(ω). The governing equation for the motion of the
mass is given in section 3.1.1. The combined effect of randomness in K(ω) and C(ω) is studied in section 3.1.2.

3.1.1 Governing mass-spring-damper equation

Consider a mass attached to a spring and a damper as shown in Figure 3. This can be a model for a more complex
structure with internal damping and stiffness. The mass-spring-damper system is governed by

M
∂2x

∂t2
+ C(ω)

∂x

∂t
+ K(ω)x = 0, t ∈ [0,∞), (4)

with mass M = 1, position of the mass x(t, ω), and initial conditions x(0) = 1 and ∂x/∂t(0) = 1. The
randomness in the positive spring stiffness K(ω) is given by a lognormal distribution with mean µK = 1 and
coefficient of variation COVK = 10%. A normal distribution is assumed for C(ω) with mean µC = 0 and
standard deviation σC = 0.01. As is common in multi-element methods, the tails of the probability distributions
for K(ω) and C(ω) are truncated such that the resolved parameter domains account for 99.8% of the realizations.
The resulting truncation error is small compared to the usual discretization and time integration errors in solving
computational engineering problems. The results below are based on the analytical solution of (4)

x(t, ω) = c1e
c2t sin(c3t) + c4e

c5t cos(c6t), (5)

where ci with i = 1, . . . , 6 are functions of M , K(ω), C(ω), x(0), and ∂x/∂t(0). Eq. (5) is evaluated at discrete
time levels tl = l∆t, with l = 0, . . . , nt, nt = tstop/∆t, tstop = 100, and ∆t = 0.01, for the results to be
comparable with the results of the other test problem obtained by numerical time integration. The time interval
corresponds to approximately 16 periods for the deterministic case with K = µK and C = µC.

3.1.2 Random K(ω) and C(ω)

The combined effect of randomness in both the spring stiffness parameter K(ω) and the damping C(ω) is con-
sidered. To this end, a two-dimensional UASFE formulation is employed to discretize the two-dimensional prob-
ability space. The approximations of the response surface of x(t, ω) at tstop as function of the random parameters
K(ω) and C(ω) by UASFE and Monte Carlo simulation are given in Figure 4. The UASFE approximation on
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Figure 3: The mass-spring-damper system.

(a) UASFE, Ns = 9 samples (b) Monte Carlo, Ns = 1.2 · 105 samples

Figure 4: Two-dimensional response surface of x(t, ω) at tstop = 100 as function of the random stiffness K(ω)
and damping C(ω) by two-dimensional Unsteady Adaptive Stochastic Finite Elements (UASFE) with Ne = 2
(Nesub

= 46, Ns = 9) and Monte Carlo (MC) simulation with Ns = 1.2 ·105 for the mass-spring-damper system.

the initial grid of Neini
= 2 elements and Nsini

= 9 samples is shown and the Monte Carlo simulation result for
Ns = 1.2·105 samples is considered. The response surface shows an oscillatory behavior in the K(ω)-dimension.
In the C(ω)-dimension the initial deflection of x0(0) = 1 is damped for C(ω) > 0 and amplified for C(ω) < 0.
Unsteady Adaptive Stochastic Finite Elements capture this complex nonlinear behavior already with Nsini

= 9
samples of the initial grid. In the post-processing of UASFE, Nesub

= 46 subelements are employed per element
for the result of Figure 4 without performing additional deterministic solves.

The results of UASFE and Monte Carlo simulation for the mean µx(t) and standard deviation σx(t) are shown
in Figure 5. UASFE converge for Ne = 16 elements and Ns = 47 samples below 5 · 10−2 in the L∞-norm. The
post-processing converges for Nesub

= 44 subelements per element. The mean µx(t) is a decaying oscillation
and the standard deviation σx(t) has initially an oscillatory behavior until approximately t = 50 due to the
random spring stiffness K(ω). For t > 50, σx(t) shows a monotonically increasing behavior due to the non-zero
probability of negative values for the damping C(ω).

3.2 Duffing equation
In this section the effect of random initial conditions for the Duffing differential equation is studied. The Duffing
equation is a model for a damped oscillator with a cubic nonlinear spring. Parameter variations are selected for
which the response shows a discontinuous change to a qualitatively different behavior. The Duffing differential
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Figure 5: Mean µx(t) and standard deviation σx(t) by two-dimensional Unsteady Adaptive Stochastic Finite
Elements (UASFE) with Ne = 16 (Ns = 47) and Monte Carlo (MC) simulation with Ns = 1.2 · 105 for the
mass-spring-damper system with random spring stiffness K(ω) and damping C(ω).

equation is described in section 3.2.1. The effect of two random initial conditions is considered in section 3.2.2.

3.2.1 Duffing system of differential equations
The Duffing system of equations is given by the following differential equations:

∂x

∂t
= y (6)

∂y

∂t
= ω2

0x − βx3 − δy + γ cos(ωγt + φ), (7)

for t ∈ [0,∞) with initial conditions x(0) = x0 and y(0) = y0. The Duffing equation is a model for a damped
oscillator with damping δ and a cubic nonlinear spring stiffness term with parameter β. According to (6), x(t)
can be interpreted as a deflection of a mass with velocity y(t). The acceleration ∂y/∂t is then governed by (7).
A hard spring with increasing spring stiffness as function of deflection x(t) is modeled by β > 0 and β < 0
holds for a soft spring. Structural stiffness behaves as a cubic hard spring in, for example, the torsional direction
of wing structures [14]. Here, the cubic spring stiffness parameter is assumed to be β = 1. The undamped and
unforced Duffing equation is considered, i.e. δ = 0 and γ = 0, and ω0 is chosen to be unity.

The resulting dynamical system has fixed points (x, y) in (−1, 0), (0, 0), and (1, 0). The fixed point (0, 0) is
unstable, and (−1, 0) and (1, 0) are linearly stable, see the x–y phase diagram in Figure 6. The solution exhibits a
periodic trajectory around either the linearly stable points (−1, 0) or (1, 0), or around all three fixed points. Which
type of system response is found, depends on the initial conditions x0 and y0. Since the qualitative behavior of
the solution is sensitive to the initial conditions, randomness is considered in x0(ω) and y0(ω). The system (6)
and (7) is solved numerically up to tstop = 100 using fourth-order explicit Runge-Kutta time integration with a
time step of t = 0.01.

3.2.2 Random x0(ω) and y0(ω)

Assuming randomness in both initial conditions x0(ω) and y0(ω) results in a two-dimensional probability space,
to which two-dimensional Unsteady Adaptive Stochastic Finite Elements are applied. The initial conditions
x0(ω) and y0(ω) are assumed to be uniformly distributed in the interval [0.45; 0.55]. This interval corresponds to
a mean of µx0

= µy0
= 0.5 and standard deviation of σx0

= σy0
= 8.33 ·10−4. This parameter domain is chosen

since it contains a bifurcation of the Duffing equation. Since the time series are periodic solutions, the UASFE
reconstruction is valid for all t ∈ [0, tstop]. The presented results are converged below 5 · 10−2 in the L∞-norm.

The bifurcation of the solution is illustrated by the two-dimensional response surfaces of x(t, ω) and y(t, ω)
at t = tstop as function of the random initial conditions x0(ω) and y0(ω) shown in Figure 7. In Figures 7a
and 7b the approximation of the response surface of x(t, ω) by UASFE with Ne = 64 elements (Nesub

= 44)
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Figure 6: Phase diagram for the Duffing equation in terms of fixed points (±1, 0) and (0, 0), and trajectories for
β = 1, δ = 0, γ = 0, and ω0 = 1.

and Ns = 151 samples, and Monte Carlo with Ns = 104 samples are given, respectively. For y(t, ω) the
corresponding results are shown in Figures 7c and 7d. The results of UASFE agree well with the Monte Carlo
results at a reduction of the number of samples by more than a factor 50. The response surfaces for x(t, ω) and
y(t, ω) are highly oscillatory due to the alternating positive and negative values of both x(t, ω) and y(t, ω). In
the response of x(t, ω) a bifurcation can be recognized at the line between (x0, y0) equal to (0.475; 0.45) and
(0.55; 0.5), see Figures 7a and 7b. Below this line, only positive values of x(t, ω) are found, which corresponds to
periodic trajectories around fixed point (1, 0). Positive and negative values of x(t, ω) occur above the bifurcation
line, which corresponds to periodic solutions around all three fixed points. In the response surface of y(t, ω) the
bifurcation can be identified at the same location.

UASFE capture the discontinuous bifurcation behavior by refining the elements near the bifurcation line. In
Figure 8 the grid of UASFE with Ne = 64 elements in probability space is given. The Ns = 151 samples are
denoted by the dots. The elements are clearly more refined near the bifurcation than in the continuous domains.
The smallest elements in the grid are 16 times smaller than the largest ones.

In Figure 9 it is demonstrated that UASFE agrees with the Monte Carlo results also for the mean and the
standard deviation of x(t, ω) and y(t, ω) for t ∈ [0, tstop]. The mean µx(t) of x(t, ω) is a damped oscillation
with a positive asymptotic value of µx = 0.15, see Figure 9a. The mean µy(t) of y(t, ω) is an oscillation
which decays to zero. Both standard deviations σx(t) and σy(t) are irregular oscillations which approach finite
asymptotic values of σx(t) = 0.75 and σy(t) = 0.46. The results show an amplification of the standard deviation
of the random initial conditions by factors 9.0 · 102 and 5.5 · 102 for x0(ω) and y0(ω), respectively.

4 Conclusions
An Unsteady Adaptive Stochastic Finite Elements (UASFE) formulation for unsteady problems is developed
based on a time-independent parametrization of deterministic time series. Due to the time-independent parametriza-
tion, UASFE maintain an approximately constant accuracy in time with a constant number of elements. The
parametrization of the samples consists of the frequency, phase, amplitude, reference value, damping, and period
shape. The parameters are interpolated using a robust Adaptive Stochastic Finite Element (ASFE) method based
on Newton-Cotes quadrature in simplex elements. This approach requires a relatively low number of determinis-
tic solves and preserves monotonicity and optima of the samples. In order to ensure the robustness of the method,
(1) the elements are refined adaptively until convergence is reached in the L∞-norm, and (2) the parametrization
error is computed to determine the time interval in which the UASFE approximation is valid.

The robustness of the ASFE interpolation enables the application of the proposed approach to problems with
bifurcations, in which the time-independent functionals are non-smooth. The effect of positive and negative
damping is resolved by the inclusion of a damping parameter in the time-independent parametrization. The
UASFE formulation includes an algorithm for parametrizing multi-period oscillations.

Results for a mass-spring-damper system and the Duffing equation with multiple random input parameters
are presented. For the mass-spring-damper system the effect of positive and negative damping on the stochastic
results is studied. Input randomness assumed in a combination of the spring stiffness parameter and the damping
parameter shows that a non-zero probability of negative damping results asymptotically in a diverging output
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(a) UASFE x(t, ω) (b) MC x(t, ω)

(c) UASFE y(t, ω) (d) MC y(t, ω)

Figure 7: Two-dimensional response surface approximations for x(tstop, ω) and y(tstop, ω) as function of random
initial conditions x0(ω) and y0(ω) by Unsteady Adaptive Stochastic Finite Elements (UASFE) with Ne = 64
(Nesub

= 44, Ns = 151) and Monte Carlo (MC) with Ns = 104 for the Duffing equation.
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Figure 8: Unsteady Adaptive Stochastic Finite Elements (UASFE) grid in two-dimensional parameter space
x0(ω)–y0(ω) with Ne = 64 (Ns = 151) given by the dots for the Duffing equation.
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(b) standard deviation σx(t)
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(c) mean µy(t)
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Figure 9: Mean µx(t) and µy(t), and standard deviation σx(t) and σy(t) by Unsteady Adaptive Stochastic Finite
Elements (UASFE) with Ne = 64 (Ns = 151) and Monte Carlo (MC) with Ns = 104 for the Duffing equation
with random initial conditions x0(ω) and y0(ω).
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standard deviation. The study of two random initial conditions for the Duffing equation illustrates that nonlinear
dynamical systems with discontinuous solutions can be extremely sensitive to random initial conditions. An
amplification factor of 9.0 · 102 has been observed for the standard deviation.
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